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Interdisciplinary communication is becoming a crucial component of the present scientific environment. Theoretical
models developed in diverse disciplines often may be successfully employed in solving seemingly unrelated problems
that can be reduced to similar mathematical formulation. The Ising model has been proposed in statistical physics
as a simplified model for analysis of magnetic interactions and structures of ferromagnetic substances. Here, we
present an application of the one-dimensional, linear Ising model to affected-sib-pair (ASP) analysis in genetics. By
analyzing simulated genetics data, we show that the simplified Ising model with only nearest-neighbor interactions
between genetic markers has statistical properties comparable to much more complex algorithms from genetics
analysis, such as those implemented in the Allegro and Mapmaker-Sibs programs. We also adapt the model to
include epistatic interactions and to demonstrate its usefulness in detecting modifier loci with weak individual
genetic contributions. A reanalysis of data on type 1 diabetes detects several susceptibility loci not previously found
by other methods of analysis.

Introduction

The Ising model (Ising 1925) was originally proposed
to explain the structure and properties of ferromagnetic
substances. Since the model allows for simplification of
complex interactions, it has since been successfully em-
ployed in several areas of science: elasticity theory of
DNA (Ahsan et al. 1998), hydrophobicity of protein
chains (Irback et al. 1996), cooperativity between ion
channels (Liu and Dilger 1993), the thermodynamic the-
ory of codon bias in genes (Rowe and Trainor 1983),
and several others.

The Ising model may be used to analyze genetic data
from affected sib pair (ASP) studies. The data structures
of the two systems are identical. Each data point may be
represented by a �1 or �1 corresponding to up and
down spin states of a magnetic dipole or to an allele
being shared and not shared by a sib pair, respectively.
The physical interactions between adjacent dipoles are
analogous to linkage between adjacent genetic markers
on a chromosome. The effect of an applied external mag-
netic field, acting to align magnetic particles in the di-
rection of the field, is analogous to the effect of a disease
gene, causing increased allele sharing at nearby loci.

Analyzing genetic data using the Ising model allows
simultaneous consideration of all markers on a chro-
mosome and has the potential to be an effective mul-
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tipoint ASP analysis method. Multipoint analyses have
the advantage of extracting maximum identity-by-de-
scent (IBD)–sharing information from a system where
not all markers are fully informative. By considering
adjacent markers jointly, multipoint methods also have
a lower overall genomewide type I–error rate, because
they eliminate spurious peaks due to random variation
in individual markers. Below, we demonstrate that the
performance of the Ising model is equivalent to that of
Allegro (Gudbjartsson et al. 2000), a leading genetics-
analysis program, and, in the example considered here,
surpasses that of Mapmaker-Sibs (Kruglyak and Lander
1995), another popular analysis package.

Moreover, the Ising model is easily adapted to the
analysis of complex genetic models with several genetic
effects and with interaction, or epistasis, between the
genes. The debate over the use of multilocus search
strategies versus the conventional single-locus searches
is an ongoing one (see, e.g., Risch 1990; Schork et al.
1993; Cordell et al. 2000). Some complex genetic dis-
orders will either not benefit from multilocus strategies,
or the power for their detection may decrease, relative
to the power of single-locus methods. However, it is
becoming increasingly clear that at least some under-
lying disease genes will be much easier to detect by joint
consideration of the effects of all interacting loci. Several
researchers have focused on the development of simul-
taneous multilocus methods (see Cordell et al. 2000 for
a summary). Although many of the current methods are
effective in certain situations, they often suffer from
computational or mathematical limitations, particularly
when more than two genes are considered jointly. The
development of a flexible multilocus, nonparametric
linkage analysis method is far from complete. Here, we
demonstrate the usefulness of the Ising model as both
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an effective method in conventional nonparametric link-
age analysis and a flexible tool for analysis of complex
genetic interactions.

Methods

The Ising Model in Physics

In its most general form, the Ising model applies to
an ensemble of magnetic particles interacting with each
other in the presence of an applied external magnetic
field. Here, we use the one-dimensional model, in which
the particles are arranged in a chain and are limited to
directly interacting only with their nearest neighbors.
The external field is a “point” field acting on a given
particle. At a particular position (t) along the chain, each
particle has a spin value of �1 or �1 (representing par-
allel or antiparallel alignment with the field). We denote
this spin value as x(t). The configuration of the entire
chain is determined by specifying x(t) at all posi-{x(t)}
tions t. The energy of the configuration of m particles
can then be expressed as

m�1 m

H[{x(t)}] p � j(t)x(t)x(t � 1) � h(t)x(t) , (1)� �
tp1 tp1

where j(t) is the coupling strength between spins x(t) and
x(t�1) and h(t) is the local magnetic field at position t.
According to statistical mechanics, the probability of ob-
serving a specific configuration is given by

(�H[{x(t)}/kT])P[{x(t)}] p e /Z , (2)

where k is the Boltzmann constant, T is the temperature
of the chain, and Z is the partition function equal to the
sum of energies of all possible configurations:

(�H[{x(t)}])Z p e . (3)�m {x(t)}

An applied external magnetic field will cause ferromag-
netic particles to align in the direction of the field, with
neighboring particles aligning in the same direction. The
effect of temperature is to introduce additional random-
ness into the system. The degree of magnetization of the
chain is determined by the strength of the field and cou-
pling energy, relative to the thermal energy.

Adaptation to Genetic Data

For pairs of affected siblings, the main statistic of in-
terest is the number of alleles shared IBD. For a given
marker locus, each parent of an ASP either does (x p
) or does not ( ) pass the same allele to the two1 x p �1

offspring. Thus, the data may be represented in the form
of a simple n7m matrix with rows corresponding to n

parents and columns corresponding to m marker loci.
For a given parent i, the status of IBD sharing for each
typed marker on a chromosome corresponds to the ith
row, and is analogous to a configuration of m particles
in the Ising model. It is assumed that the data for each
parent represent an independent draw from an under-
lying probability distribution.

We model the distribution of by given{x(t)} P[{x(t)}]
in equations (1) and (2). The first term in equation (1),

, represents the fact that if a marker is shared IBDj(t)
the neighboring markers have an increased chance to be
also shared because of genetic linkage. The second term,

, is the actual parameter of interest to genetic studies,h(t)
since a local magnetic field at position t is analogous to
a genetic effect causing an increase in IBD sharing at the
t locus. In affected siblings, increased IBD sharing is a
result of proximity of a causative disease gene. For a
simple Mendelian disease, there will be an apparent
strong “field” close to the disease gene. For a complex
disease, there may be multiple genes that influence the
disease with variable strengths. Thus, the model may
contain as many as parameters,m � m � 1 p 2m � 1
where m is the number of markers. If epistatic interac-
tions between genes are to be considered, the model will
consist of additional interaction terms.

There is no direct analogy relating the temperature
(T) and the Boltzmann constant (k) in thermodynamics
to genetic parameters. The model parameters andj/kT

, which in physical systems correspond to theh/kT
strength of magnetic coupling and the strength of the
applied field relative to the thermal noise of the system,
may be respectively viewed as the extent of genetic link-
age between markers and the effect of the disease locus
in distorting allele sharing, relative to random genetic
and environmental effects.

Parameter Estimation and Significance Testing

For a given parent i, the probability of observing a
particular IBD sharing configuration, , is given by{x (t)}i

. Since the observations for each parent are in-P[{x (t)}]i

dependent, the probability of observing the entire parent
7 IBD-sharing matrix, is the product:

n

( )P(data) p � P x t{ }[ ]i
ip1

This is equivalent to the likelihood, . TheL[{j(t)},{h(t)}]
parameters of the model, and are estimated byj(t) h(t)
use of maximum likelihood—that is, maximizing the
probability of observing a particular data set. We im-
plemented the Powell method (Press et al. 1990) to max-
imize the multivariate likelihood function.

The likelihood function is dependent on Z (eq. [3]), the
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partition function of the Ising model. The partition func-
tion is the sum of the Boltzman weights of all possible
configurations of the data set. Since the number of con-
figurations is equal to , the running time of the max-nm2
imization procedure should increase exponentially with
the size of the data set. Fortunately, the partition function
for the Ising model with only nearest-neighbor interac-
tions can be calculated recursively in linear time (Reichl
1980). The algorithm is outlined in Appendix A.

After maximization of all relevant parameters, the sig-
nificance of a hypothesis is tested by the likelihood ratio
(LR) test. Under the simplest hypothesis of one disease
locus at position , only one effect parameter, , ist h(t )1 1

maximized in the numerator, whereas all the other effects
are kept equal to zero. This gives an LR test with 1 df:

ˆˆL({j(t)},{h(t)})
LR p .˜L({j(t)},{h(t) p 0})

Since the genetic effect can only take on positive val-
ues, under the null hypothesis of no linkage and no in-
teraction, is asymptotically distributed as a2 ln (LR)
50% mixture of a point mass at zero and a x2 distri-
bution with 1 df. Because we are not interested in the
coupling parameters, , we treat them as nuisance{j(t)}
parameters, maximizing separately in both the nu-{j(t)}
merator and denominator. This strategy is equivalent to
simultaneous estimation of disease-locus position and
recombination rates from the data.

In the epistatic model (see the Data and Simulation
section), two genetic-effect loci and their interaction are
considered jointly. Equation (1) must be modified by an
additional interaction term, , wherej(int) 7 x(t ) 7 x(t )1 2

and are the positions of the two interacting genes,t t1 2

and is the interaction parameter. In the LR test,j(int)
two effect parameters, and , and the interactionh(t ) h(t )1 2

parameter are estimated by maximum likelihoodj(int)
in the numerator. The locus is the main effect locus,t1

which is easily identified. Since its position is already
known, we treat its effect as a nuisance parameterh(t )1

(i.e., we maximize its value separately in both the nu-
merator and the denominator). This results in an LR test
with 2 df:

ˆ ˆˆ ˆL[{j(t)},h(t ),h(t ),j(int)]1 2LR p .˜˜L[{j(t)},h(t ),h(t ) p 0,j(int) p 0]1 2

Since the genetic effect can only take on positive val-
ues, but the interaction term can be either positive or
negative, under the null hypothesis of no linkage and
no interaction, is asymptotically distributed as2 ln (LR)
a 50% mixture of x2 with 1 df and x2 with 2 df. Note
that this is the simplest possible example of two-locus

epistasis. When additional interaction coefficients and
effect loci are added, the model can easily be extended
to more-complex genetic systems.

Missing Data and Undetermined IBD-Sharing States

When one or both of the parents are not genotyped,
or the markers are not fully informative, the IBD sharing
state may be impossible to determine with certainty. In
cases with unknown IBD sharing, we calculate the like-
lihood under the assumption of the unknown state being
either �1 or �1. That is, the probability of observing
the data is given as the sum of the probabilities for the
two possible cases, weighted by any additional infor-
mation about the IBD sharing (e.g., the knowledge of
population allele frequencies or typed unaffected sibs):

P[{x (t)}, x (v) p 0] p P 7 P[{x (t)}, x (v) p �1]i i �1 i i

�P 7 P[{x (t)}, x (v) p �1] ,�1 i i

where indicates unknown IBD sharing at po-x (v) p 0i

sition v, and P�1 and P�1 are the probabilities that the
undetermined state has a value of �1 or �1, respectively.
In this article, all data consists of fully typed parents and
sibs, where no additional information can improve the
knowledge of IBD sharing, and the two weights (P�1 and
P�1) are set equal.

When multiple unknown IBD states are present within
the data set, the running time of the likelihood calcu-
lation should increase exponentially with the amount of
missing data. However, it is possible to calculate the
likelihood in linear time with respect to the total number
of marker loci, by use of an algorithm similar to the one
used for calculating the partition function (Appendix A).

Data and Simulation

To model an individual genetic effect, we used the
program SIMNUCLEAR to simulate a disease trait and
genotypes for 100 sib pairs. The data were simulated
under the assumption of no dominance variance, heri-
tability, , shared environment variance of2h p 0.06
0.40, and the “affected” phenotype cutoff defined as the
most extreme 0.01 of the quantitative phenotype. Geno-
typic data was simulated for parents and children. All
marker loci were assumed to have six alleles with equal
frequencies. The resulting unambiguous IBD determi-
nation rate was ∼75%. IBD sharing status was deter-
mined using the sib_ibd module of the ASPEX package,
and the single-point IBD-sharing states were then proc-
essed using the Ising model to produce a multipoint sta-
tistic. For type I–error analysis, null data were simulated
as above but without any genetic effect on the quanti-
tative phenotype. This data set was designed to test the



856 Am. J. Hum. Genet. 69:853–862, 2001

Table 1

Inheritance Model for an Epistatic Two-
Locus Trait

LOCUS 1

LOCUS 2

BB Bb bb

AA 0 0 0
Aa 0 0 1
aa 1 1 1

NOTE.—Locus 1 is recessive, given gen-
otypes BB and Bb at locus 2, and is dom-
inant, given genotype bb. Disease-allele
frequencies are set at andp(a) p .01

.p(b) p .02

Figure 1 Example of a typical LOD-score curve comparing the
performance of the Ising model, Allegro, and the single point x2 sta-
tistic. The disease locus is situated at position 10 cM. The behavior
of the Ising model and that of the Allegro exponential pairs statistic
are virtually identical. The single-point allele-sharing method has con-
siderably lower power and is subject to greater local fluctuations.

effectiveness of the Ising model as a multipoint allele-
sharing statistic, as well as the model’s ability to extract
information from data where IBD sharing cannot always
be uniquely determined.

The second data set, used for detection of a weak locus
with epistatic interactions, is described in detail by Lucek
et al. (1998). Briefly, the genetic model consists of a
main-effect locus and a modifier locus (table 1). The
main-effect gene is responsible for a majority of the ob-
served disease phenotype. It is easily detectable. The
modifier locus, however, has very low expected excess
IBD sharing (0.52, vs. the 0.5 expected by chance) and
is very hard to detect by ordinary methods. Data for
two chromosomes, each consisting of 10 equally spaced
(10 cM) markers, were simulated for 2,000 sib pairs.
The main effect locus was tightly linked to marker 5 on
chromosome 1, whereas the modifier locus was linked
to marker 5 on chromosome 2. All parents were het-
erozygous for distinct marker alleles, and, hence, IBD
sharing was always uniquely determined. The data set
was used to produce bootstrap replicates of 250 sib pairs
each. Then 2,000 bootstrap replicates were used to as-
sess the power to detect linkage at the weak modifier
locus. Type I error was estimated using the genetic data
described above for chromosome 1, but data for chro-
mosome 2 were generated randomly, without linkage to
a disease locus.

The third and final data set comprises real data from
the insulin-dependent diabetes mellitus (IDDM) genome
screen (Mein et al. 1998): 356 genotyped sib pairs and
parents, with an average intermarker distance of about
10 cM. We use these data to demonstrate the usefulness
of the Ising model both as a single-locus and as a two-
locus (by conditioning on the strong effect of the HLA
locus) analysis method.

Results

Multipoint Allele Sharing

We declared linkage to the disease locus if a LOD
score exceeded a predetermined cutoff level at any point

within a 20-cM interval centered at the locus. This cri-
terion is representative of a study aiming to confirm a
previously suggested linkage result. We compared the
performance of the Ising model and two leading non-
parametric genetic analysis programs: Allegro (Gud-
bjartsson et al. 2000) and Mapmaker-Sibs (Kruglyak and
Lander 1995). We also calculated a single point x2 sta-
tistic for the number of shared and nonshared alleles at
each marker location. Typical results are shown in figure
1. The power analysis, based on 20,000 replicates of
simulated data and various significance cutoffs, corre-
sponding to suggestive, significant, and highly significant
linkage (Lander and Kruglyak 1995), is summarized in
table 1. Note that the maximum-likelihood statistic
(MLS) score in Mapmaker-Sibs is not equivalent to the
1-df likelihood-ratio test score. A correction to the sig-
nificance cutoff was applied according to Nyholt (2000).
For the x2 statistic, the corresponding LOD is calculated
using . The results in table 2 are for2LOD p x / (2 ln 10)
a 2-cM–density marker map.

Power analysis (table 2) and examination of individual
LOD score plots (see fig. 1) shows that the Ising statistic
and the exponential pairs (Allegro) statistic are prac-ZLR

tically equivalent. The performance of the Mapmaker-
Sibs MLSpt (the full possible triangle, without the “no
dominance” restriction) statistic was inferior to the

and Ising statistics. The power of the MLSpt wasZLR

significantly lower (but note that the difference is small)
than that of the Ising statistic ( ) at all levels exceptP ! .05
for the LOD p 3.63 cutoff. As expected, all multipoint
methods are superior to the single-point statistic.2x

In type I–error analysis, a false-positive result was de-
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Table 2

Comparison of IBD Allele-Sharing Statistics

MODEL

POWER AT LOD SCORE CUTOFF INTERVALWISE TYPE I ERROR AT CUTOFF

2.19 (2.45) 3.00 (3.28) 3.63 (3.93) 5.30 (5.76) .59 (0.74) 1.18 (1.38) 1.44 (1.66) 2.19 (2.45)

Ising .834 .654 .497 .178 .151 .041 .023 .005
Allegro ( )ZLR .836 .652 .505 .176 .151 .041 .023 .005
Mapmaker-Sibs (MLSpt) .818 .646 .495 .168 .165 .045 .026 .005
x2 .811 .618 .438 .121 .221 .062 .037 .007

NOTE.— The cut-off levels in parentheses refer to the equivalent MLSPT score in Mapmaker-Sibs.

clared when a LOD score exceeded a predeterminedcutoff
level within a simulated interval of 20 cM, unlinked to
the disease locus. This “intervalwise” false-positive rate
corresponds to a study aiming to confirm linkage de-
scribed above and is a useful measure of error for com-
parison of different multipoint methods. Lower signifi-
cance cutoff levels were used for type I–error analysis than
for power analysis, because the false-positive rates are low
and a much larger number of replicates would be nec-
essary to determine error rates at higher levels. The re-
ported levels correspond to single-point P values of .05,
.01, .005 and 7.4710�4 (suggestive linkage). Results for
a 2-cM marker map are summarized in table 1.

Once again, the Ising and statistics have essen-ZLR

tially identical type I–error rates. The MLSpt has a sig-
nificantly higher intervalwise false-positive rate (P !

) than Ising at the first three cutoff levels (i.e., LODs.05
of 0.59, 1.18, and 1.44). A similar result has previously
been observed by Shugart and Goldgar (1997). The
number of replicates is too low to assess the significance
of the differences in type I–error rate at the highest sig-
nificance level (LOD 2.19). All multipoint statistics have
significantly lower type I–error rates than does the single-
point x2 statistic.

Epistatic Interaction

In this analysis, we concentrate on the effectiveness of
the Ising model to detect weak-effect loci with epistatic
interactions. The main-effect locus is easily detectable.
We tested the detection of the weak locus, using the Ising
model with two effect loci and an interaction, under the
assumption that the main locus has already been de-
tected (see the Methods section). In this example, since
the markers were fully informative, linkage was declared
if the test statistic exceeded a predetermined cutoff at
the simulated disease locus. The results are shown in
table 3. Although the power to detect the weak locus is
low, the Ising model visibly outperforms the single-locus
search method—the x2 or the exponential-pairs sta-ZLR

tistic, which are equivalent for independent sib pairs
where all markers are fully informative (Sengul et al.
2000). We have also tested another popular strategy
based on exclusion of sib pairs sharing two alleles at a

“strong” locus (e.g., Mein et al. 1998). Such a strategy
removes much of the effect of the major locus, and a
single-locus search may then be carried out on the re-
maining data (i.e., sib pairs sharing 0 and 1 alleles at
the major locus 1). Table 3 shows that the Ising model
outperforms such a search at all significance levels.

The pointwise significance of all three methods may
be determined from the asymptotic behavior of the re-
spective statistics. However, in order to verify the cor-
rectness of P values with respect to the particular data
set used here, we carried out type I–error analysis by
simulating data with a main-effect locus but without the
weak locus, as described in the sib-pair data and sim-
ulation section. The pointwise type I–error rate is within
the theoretically predicted range for the conditional ep-
istatic search (Ising model), splitting by allele sharing at
locus 1, and the simple single-locus search. Note that,
although pointwise values are presented here, in the case
of a genome scan, the conditional epistatic search suffers
from exactly the same multiple testing problems as the
single-locus search. After correcting for the difference in
number of degrees of freedom, same significance criteria
should be used for both methods. The power versus type
I–error rate curves are shown in figure 2, illustrating the
superior performance of the two-locus epistatic model.

Analysis of IDDM Data

The diabetes data set has been extensively analyzed
using various approaches, including single-locus methods,
splitting the data by IBD sharing at the HLA locus (Mein
et al. 1998), and conditional multilocus methods (Cordell
et al. 1995, 2000). We first analyzed the data using the
single-locus approach (i.e., considering only one effect lo-
cus at a time) followed by a two-locus conditional ap-
proach, conditioning on the strong HLA locus and con-
sidering a model with an additional effect locus and an
epistatic interaction between HLA and the second locus
(as in the analysis of simulated data with epistasis above).
The analysis presented here is meant predominantly as a
confirmation of the performance of the Ising model on
real data, rather than a search for novel IDDM loci. How-
ever, several interesting results can be observed.

The single-locus results are similar to those already re-
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Figure 2 Power versus type I–error rates for analysis of the two-
locus genetic model. The conditional epistatic two-locus Ising model
is compared with a single-locus analysis, illustrated either by the Al-
legro exponential pairs statistic or by a x2 statistic (for fully informative
markers, the two single-locus methods are equivalent), and with an
analysis based on splitting the sample according to the IBD-sharing
state at locus 1, followed by a single-locus analysis of only those sib
pairs sharing 0 or 1 alleles IBD.

Table 3

Detection of a Weak Locus with an Epistatic Interaction

MODEL

POWER AT LOD SCORE CUT-OFF POINTWISE TYPE I ERROR AT CUT-OFF

.59 (1.13) .92 (1.50) 1.18 (1.80) 1.44 (2.09) .59 (1.13) .92 (1.50) 1.18 (1.80) 1.44 (2.09)

Ising .377 .263 .190 .138 .030 .013 .008 .006
x2 (0 and 1 sharers at locus 1) .326 .189 .113 .064 .044 .018 .008 .004
x2/Allegro (single-locus) .286 .176 .119 .088 .049 .020 .009 .005

NOTE.—The cut-off levels in parenthesis refer to the 2-df LR test in the Ising model with epistatic interaction. The P values corresponding
to the LODs shown are .05, .02, .01, and .005, respectively.

ported in previous analyses. The Ising model detects the
HLA locus (IDDM1 ) with a maximum single-locus LOD
score of 33.5. The other notable single-locus hits are:
IDDM10 (LOD 4.21), D16S908 (LOD 3.19), IDDM2
(LOD 2.72), and D19S226 (LOD 2.06). As expected, the
significance levels for the above scores are comparable to
those already reported by Mein et al. (1998).

The two-locus conditional analysis is considerably
more interesting. The most noteworthy results are shown
in table 4. The table contains loci with evidence for a
significant genetic effect ( ) and a significant epi-P ! .05
static interaction with HLA ( ). Several of the de-P ! .05
tected loci coincide with those reported in the multilocus
conditional search by Cordell et al. (2000): D3S1576,
D8S88, D16S3098, and D21S120. However, the Ising
model suggests several additional epistatic loci. D1S229
has previously been shown to be linked with IDDM by
an independent study (Concannon et al. 1998) with a
LOD score of 3.31. This locus has not been identified
by Cordell et al. (2000). Similarly, D2S301 corresponds
to IDDM13. This locus does not exhibit any appreciable
excess allele-sharing in a single-locus search but is de-
tected by the epistatic search using the Ising model.
Other loci detected uniquely by the Ising model (D7S519
and D13S153) have not been noted in any previous stud-
ies and may constitute new candidate IDDM loci.

An interesting case is illustrated by IDDM15 on chro-
mosome 6. This putative locus is very close to IDDM1,
and its considerably smaller contribution is hidden under
the high IBD-sharing proportion in the vicinity of the
stronger locus. The Ising model can be particularly ef-
ficient in detecting such loci. If the presence of two un-
derlying disease genes within a linked chromosomal re-
gion is suspected, it is sufficient to use a model with a
main locus and a conditional locus, but no interaction
term. Any epistatic interaction between the two genes is
absorbed in the coupling parameters of the Ising model,
already representing genetic linkage due to colocaliza-
tion. The resulting test has 1 df and should be maximally
sensitive for detection of such cases. In fact, the Ising
model gives a LOD score of 2.26 at IDDM15, corre-
sponding to .P ! .0006

Several putative interactions detected by Cordell et
al. (2000) are not picked up by the Ising model. These

include TH/INS (IDDM2), FGF3 (IDDM4), and
D18S487, further demonstrating that both similarities
and differences exist between the two approaches. More
studies of different types of genetic interactions will be
necessary to determine the conditions under which mod-
els such as that of Cordell et al. (2000) or the Ising model
described here will be more a powerful approach.

Discussion

The Ising model is a simplified representation of inter-
actions within a complex system. In ASP analysis, the
IBD sharing matrix can be analyzed in the context of a
signal due to a disease locus and the genetic linkage of
each marker locus to its nearest neighbor. By jointly
considering all markers on a chromosome and account-
ing for linkage between them, the Ising model allows
the calculation of a multipoint allele-sharing statistic.

The multipoint analysis presented here shows that the
Ising statistic is essentially equivalent to the exponential-
pairs statistic computed by the Allegro program.ZLR
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Table 4

Two-Locus Conditional Analysis of IDDM Data Using the Ising Model

CHROMOSOME MARKERa

LOCATION

(cM)

LOD SCORE (P)

Single Locusb Two Locus Interaction

1 D1S229 238 .003 (NS) 1.43 (.02) Negative
2 D2S301 215 .0004 (NS) 1.30 (.03) Positive
2 D2S119 65 .03 (NS) 1.69 (.01) Negative
3 D3S1560 19 .09 (NS) 1.50 (.02) Negative
3 D3S1576 152 1.09 (.01) 1.70 (.01) Positive
4 D4S431 (D4S412) 12 (5) .90 (.02) 1.57 (.02) Negative
6 D6S294 79 … 2.26 (.0006)c …
7 D7S519 69 .09 (NS) 1.17 (.03) Negative
8 D8S281 (D8S257) 125 (111) .71 (.04) 1.71 (.01) Positive
13 D13S153 46 .005 (NS) 1.72 (.009) Negative
14 D14S276 (D14S75) 56 .93 (.02) 1.65 (.01) Positive
16 D16S3098 108 3.16 (.00006) 4.32 (.00002) Positive
21 D21S219 34 0 (NS) 1.22 (.03) Negative

a The results shown are for selected loci where the two-locus conditional model is significant at
the level and where there is evidence ( ) for an interaction between the test locus andP ! .05 P ! .05
the conditional locus (HLA). In cases where the locations of the single-locus and two-locus maximum
LOD scores are different, the location for the two-locus peak is indicated in parentheses.

b NS p not significant.
c This is a two-locus conditional LOD score with no additional interaction term. No interaction

is necessary, since any genetic interaction between candidate genes is absorbed by the interaction
terms due to linkage between markers. The resulting test is a one-sided LR test with 1 df.

Figure 1 shows a graphic example of the near-equiva-
lence of the two statistics. The power and type I–error
rates estimated from 20,000 simulated data sets are
practically identical (table 2). The correspondence of
LOD score curves is even more striking for a more dense
genome scan but decreases for a less dense map (data
not shown). The performance of the MLSpt, was inferior
to the and Ising statistics. Both the power and theZLR

false-positive rates of the MLSpt were slightly, but sig-
nificantly, poorer than the corresponding power and
false-positive rates of the Ising statistic.

The above results may be better understood in terms
of the genetic models that implicitly underlie most non-
parametric statistics. The most general model is repre-
sented by the MLSpt statistic, which independently con-
siders the proportions of sib pairs sharing 0, 1, and 2
alleles (designated by z0, z1, and z2) at a given locus and
measures their deviations from the proportions expected
under the null hypothesis of no linkage—that is, z p0

, , and . By contrast, many pop-0.25 z p 0.5 z p 0.251 2

ular nonparametric tests compare a weighted sum of
with its null expectation. Such 1-df tests im-z � wz1 2

plicitly correspond to a particular genetic model. For
example, the popular means test considers the sum

(i.e., , which is equivalent to measuringz � 2z w p 21 2

the total proportion of alleles shared IBD) and corre-
sponds to an additive genetic model (Whittemore and
Tu 1998). The Zlr (pairs) statistic in Allegro can also be
shown to correspond to the additive model (Kong and
Cox 1997). The Ising-model statistic depends only on

the total number of alleles shared IBD at a given locus
(note that IBD states for each parent are considered
independent and may be permuted freely without al-
tering the result), and, hence, it too corresponds to an
additive genetic model. It is thus not surprising that the
Ising and Zlr statistics are nearly equivalent in the above
analysis. It should be noted that the 1-df models are
still valid when the true genetic model is not additive,
but there should be some loss of power as compared to
the most general model (e.g., the MLSpt statistic). Con-
versely, Ising and Zlr statistics are expected to outper-
form the MLSpt statistic when the true generating model
is closest to additive, as is the case with the simulated
data considered here.

As expected, all multipoint methods outperformed the
single-point x2 statistic. Combining incomplete infor-
mation from neighboring markers results in a more pre-
cise determination of the IBD-sharing status, while IBD
sharing at each single marker may not always be un-
ambiguously determined. The corresponding decrease in
type I–error results from sharing of information between
neighboring markers to eliminate spurious peaks.

The analysis of a two-locus system with epistasis
shows that the Ising model is easily adapted to represent
complex genetic systems. The use of a conditional
search with epistatic interaction results in a significant
increase in power to detect the weak modifier locus in
the two-locus genetic model, as compared to a conven-
tional one-locus search. Although the power is low at
all significance levels, for levels of , the powerP ! .02
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of the conditional search is nearly twice that of the one-
locus search. This particular example demonstrates
that, for certain complex genetic models, the disadvan-
tage of introducing an extra degree of freedom into the
system is more than compensated for by a more accurate
representation of the genetic model.

It should be noted, that the Ising model with epistatic
interactions remains a model-free method in the genetic
sense; no inheritance model is assumed for the trait.
When conditioning on the existence of a known locus,
the search for epistatic loci depends on specification of
at least one other locus and a possible interaction be-
tween the two (or more) genes. Any correlation between
IBD-sharing states at distinct loci constitutes an epistatic
interaction. Furthermore, the model may be used not
only for detection of epistatic loci but also to test for
the presence of interactions. The appropriate LR test
for the latter compares the model with the interaction
to the model with the interaction set to zero, providing
a simple test for the presence or absence of epistasis.
Some information regarding the nature of the interac-
tion may be obtained from the sign of the interaction
term. A positive interaction implies positive correlation
between IBD-sharing states at different loci, suggesting
an additive or a threshold model. An example of neg-
ative interaction or negative correlation between IBD-
sharing states is presented in the above example of a
weak modifier locus.

Analysis of the IDDM data shows that the Ising
model performs well in real situations. Single-locus re-
sults are comparable to those obtained in previous anal-
yses (e.g., Mein et al. 1998). The conditional, two-locus,
epistatic analysis replicates some of the results of Cor-
dell et al. (2000) but also suggests other epistatic loci,
some of which correspond to loci detected using inde-
pendent data (D1S229 and IDDM13) and some of
which may represent new IDDM loci (D7S519 and
D13S153). However, the Ising model fails to detect
some of the epistatic interactions observed by Cordell
et al. (2000), demonstrating that the two approaches to
analyzing epistatic systems are not equivalent.

As mentioned above, the Ising model is based on de-
tection of deviation of the “mean” overall IBD sharing
from the expected proportion, whereas models based
on the MLS consider deviations from normal in the
proportions of individuals sharing 0, 1, and 2 alleles.
Hence, the two-locus Ising model with epistatis requires
only one additional parameter to measure the correla-
tion between IBD sharing at two loci, whereas an anal-
ogous MLS-based model requires nine additional pa-
rameters in order to estimate interactions between 0-,
1-, and 2-allele sharers. Although more comparative
analysis with simulated data will be necessary to deter-
mine under what conditions the two approaches will

differ, it may be expected that the Ising model, because
of its underlying additive genetic model, may perform
particularly well in detecting additive interactions,
whereas the MLS-based approach may be more suitable
for detecting general interactions. Also, as illustrated by
the example of IDDM1 and IDDM15, because the Ising
model includes coupling parameters representing inter-
actions between linked loci, the model may be partic-
ularly well suited for detection of epistatic loci within
a linked chromosomal region.

The Ising model is also attractive from the perspective
of significance testing. The introduction of additional
parameters in epistatic models results simply in increas-
ing the number of degrees freedom in the LR test, the
asymptotic significance of which can be assessed using
a x2 distribution. Unlike the MLS-based approach, sim-
ulations are not necessary to calculate P values.

Although the examples considered here are two-locus
systems, the Ising model can be extended to systems
with a higher number of loci and higher number of
interactions. It can be used either as a conditional or a
nested method for location of subsequent disease genes
or for simultaneous detection of multiple loci (although
an appropriate multiple-testing correction would have
to be applied in consideration of pairs of loci in a ge-
nome scan). The current implementation of the Ising
model applies only to sib pairs, but future developments
should include extension to other affected relative pairs.

The costs and benefits of multilocus search schemes
remain debatable. Clearly, in certain cases, there will be
no gain in power—and a likely loss—when complex
genetic models are considered (Li and Reich 2000).
However, in many cases, virtually the only way to detect
loci with weak genetic effects is to view their contri-
bution in the context of the entire genetic pathway (or
in as much of the pathway as is known to us). As major
disease genes are being discovered and our knowledge
of their function increases, multilocus methods should
become effective tools for detecting minor genes and
their interactions with the known loci. Here, we have
adapted a statistical tool developed for the physical sci-
ences to the analysis of genetic data and present it as
an efficient method for multipoint, multilocus linkage
analysis. The model is easily adapted to the represen-
tation of complex genetic systems and allows for testing
of diverse hypotheses required for detection of weak
loci and interactions in complex disorders.
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Appendix A

For a system of m markers, the probability of observing a particular configuration is given by

(�H[{x(t) }])me
P[{x(t) }] p ,m Zm

where is the energy of the configuration:H{x(t) }m

m�1 m

H[{x(t) }] p � j(t)x(t)x(t � 1) � h(t)x(t) ,� �m
tp1 tp1

and is the partition function, defined as the sum of energies over all the possible states of the system:Zm

(�H[{x(t) }])mZ p e .�m {x(t) }m

Since, at every position, the system has two possible states, the overall number of states is equal to . Hence,m2
the number of terms in the above summation increases exponentially with the number of markers, and the calculation
may become very time intensive. Fortunately, since the model involves only nearest neighbor interactions, the
calculation can be simplified to run linearly in m. First, write , where Zm� is the value of theZ p Z � Zm m� m�

partition function for m dipoles, given that the last (mth) position has a positive spin, and Zm� is the value of the
partition function, given that the last position has a negative spin. We can then write

m�2 m�1

Z p exp � j(t)x(t)x(t � 1) � j(m � 1)(1)(1) � h(t)x(t) � h(m)(1)� � �m� {x(t) ,x(m�1)p1}m�1 ( )tp1 tp1

m�2 m�1

� exp � j(t)x(t)x(t � 1) � j(m � 1)(�1)(1) � h(t)x(t) � h(m)(1) ,� � �{x ,x(m�1)p�1}m�1 ( )tp1 tp1

where the two summation terms are over all possible configurations of a system with markers, given{x } (m � 1)m�1

that the th position has the value �1 or �1, respectively.(m � 1)
A similar expression may be written for . This simplifies toZm�

j(m�1) h(m) �j(m�1) h(m)Z p Z 7 e e � Z 7 e e ,m� (m�1)� (m�1)�

and, hence,

h(m) j(m�1) �j(m�1)Z p e (Z 7 e � Z 7 e ) ,m� (m�1)� (m�1)�

and

�h(m) �j(m�1) j(m�1)Z p e [Z 7 e � Z 7 e ] .m� (m�1)� (m�1)�

The partition function can then be calculated recursively from the above two expressions. The algorithm usedZm

in the program calculates in linear time in m. The above method for calculating the partition function is easilyZm

adapted for efficient calculation of the energy of each individual state of the system with missing data, as well as
epistatic models involving additional interactions between genetic-effect loci.

Electronic-Database Information

Accession numbers and URLs for data in this article are as
follows:

ASPEX package, ftp://lahmed.stanford.edu/pub/aspex
Ising model, http://linkage.rockefeller.edu/majewski/Ising.html

SIMNUCLEAR program (brief manual), http://linkage
.rockefeller.edu/ott/simnuc.html

References

Ahsan A, Rudnick J, Bruinsma R (1998) Elasticity theory of
the B-DNA to S-DNA transition. Biophys J 74:132–137



862 Am. J. Hum. Genet. 69:853–862, 2001

Concannon P, Gogolin-Ewens KJ, Hinds DA, Wapelhorst B,
Morrison VA, Stirling B, Mitra M, Farmer J, Williams SR,
Cox NJ, Bell GI, Risch N, Spielman RS (1998) A second-
generation screen of the human genome for susceptibility to
insulin-dependent diabetes mellitus. Nat Genet 19:292–296

Cordell HJ, Todd JA, Bennett ST, Kawaguchi Y, Farrall M
(1995) Two-locus maximum lod score analysis of a multi-
factorial trait: joint consideration of IDDM2 and IDDM4
with IDDM1 in type 1 diabetes. Am J Hum Genet 57:
920–934

Cordell HJ, Wedig GC, Jacobs KB, Elston RC (2000) Multil-
ocus linkage tests based on affected relative pairs. Am J Hum
Genet 66:1273–1286

Gudbjartsson DF, Jonasson K, Frigge ML, Kong A (2000) Al-
legro, a new computer program for multipoint linkage anal-
ysis. Nat Genet 25:12–13

Irback A, Peterson C, Potthast F (1996) Evidence for nonran-
dom hydrophobicity structures in protein chains. Proc Natl
Acad Sci USA 93:9533–9538

Ising E (1925) Beitrag zur Theorie des Ferromagnetismus. Z
Physik 31:253–258

Kong A, Cox NJ (1997) Allele-sharing models: LOD scores
and accurate linkage tests. Am J Hum Genet 61:1179–1188

Kruglyak L, Lander ES (1995) Complete multipoint sib-pair
analysis of qualitative and quantitative traits. Am J Hum
Genet 57:439–454

Lander E, Kruglyak L (1995) Genetic dissection of complex
traits: guidelines for interpreting and reporting linkage re-
sults. Nat Genet 11:241–247

Li W, Reich J (2000) A complete enumeration and classification
of two-locus disease models. Hum Hered 50:334–349

Liu Y, Dilger JP (1993) Application of the one- and two-di-

mensional Ising models to studies of cooperativity between
ion channels. Biophys J 64:26–35

Lucek P, Hanke J, Reich J, Solla SA, Ott J (1998) Multi-locus
nonparametric linkage analysis of complex trait loci with
neural networks. Hum Hered 48:275–284

Mein CA, Esposito L, Dunn MG, Johnson GC, Timms AE,
Goy JV, Smith AN, Sebag-Montefiore L, Merriman ME,
Wilson AJ, Pritchard LE, Cucca F, Barnett AH, Bain SC,
Todd JA (1998) A search for type 1 diabetes susceptibility
genes in families from the United Kingdom. Nat Genet 19:
297–300

Nyholt DR (2000) All LODs are not created equal. Am J Hum
Genet 67:282–288

Press W, Teukolsky SA, Vetterling WT, Flannery BP (1990)
Numerical recipes in C. Cambridge University Press, New
York

Reichl LE (1980) A modern course in statistical physics. Uni-
versity of Texas Press, Austin, TX

Risch N (1990) Linkage strategies for genetically complex
traits. I. Multilocus models. Am J Hum Genet 46:222–228

Rowe GW, Trainor LE (1983) A thermodynamic theory of
codon bias in viral genes. J Theor Biol 101:171–203

Schork NJ, Boehnke M, Terwilliger JD, Ott J (1993) Two-
trait-locus linkage analysis: a powerful strategy for mapping
complex genetic traits. Am J Hum Genet 53:1127–1136

Sengul H, Weeks, DE, Feingold, E (2000) Affected-sibship sta-
tistics for nonparametric linkage analysis. Am J Hum Genet
Suppl 67:309

Shugart YY, Goldgar DE (1997) The performance of MIM in
comparison with MAPMAKER/SIBS to detect QTLs. Genet
Epidemiol 14:897–902

Whittemore AS, Tu IP (1998) Simple, robust linkage tests for
affected sibs. Am J Hum Genet 62:1228–1242


	The Ising Model in Physics and Statistical Genetics
	Introduction
	Methods
	The Ising Model in Physics
	Adaptation to Genetic Data
	Parameter Estimation and Significance Testing
	Missing Data and Undetermined IBD-Sharing States
	Data and Simulation

	Results
	Multipoint Allele Sharing
	Epistatic Interaction
	Analysis of IDDM Data

	Discussion
	Acknowledgments
	References


